

Measurements of Direct Photon Production Cross Sections at the Tevatron

Costas Vellidis

(Fermilab)

on behalf of the CDF and D0 Collaborations

Workshop on Standard Model Benchmarks at the Tevatron and LHC Fermilab, November 19, 2010

Outline

- Introduction
- Single photon production measurements
- Photon pair production measurements
- Conclusions

Introduction

- Direct or prompt photon = not coming from neutral hadron decays (mostly π^0 and η) or from radiation in the detector material non-prompt photons form a background which is subtracted from the data
- Photons can be measured with **high precision** in modern calorimeters
- Measurements of direct photon differential cross sections are a precision probe for understanding the dynamics of high energy hadron collisions and for searching new phenomena
- The Tevatron is an ideal place to conduct such measurements: A highly performing collider with two well understood detectors, CDF and D0, provide a large amount of high quality data

Experimental Environment: Fermilab Tevatron

FERMILAB'S ACCELERATOR CHAIN

- ☐ Central electromagnetic calorimeters
 - → CDF: scintillator lead with pre-radiation (CPR) and shower profile (CES) chambers $\sigma(E) / E = 13.5\% / \sqrt{E} \oplus 1.5\%$
 - \rightarrow D0: liquid argon uranium $\sigma(E) / E = (18.0 20.0)\% / \sqrt{E} \oplus 2.0\%$ 19/11/2010 Costas Vellidis

- ppbar collisions at 1.96 TeV (since 2001)
- ~ 9.5 fb⁻¹ delivered, ~ 8 fb⁻¹ on tape for each experiment

Measurement of the Inclusive Isolated Prompt Photon Cross Section using the CDF Detector

(Phys. Rev. D80: 111106, 2009 arXiv:0910.3623v2)

- Quark annihilation, Compton scattering and quark → photon fragmentation (hard bremsstrahlung from the final state quark) dominate
- Measurement of $d\sigma/(dE_T^{\gamma}dy^{\gamma})$ **tests pQCD** with potential to constrain the proton PDFs
- Isolated photons ($E_T^{R=0.4} E_T^{\gamma} < 2 \text{ GeV}$) with 30 GeV $< E_T^{\gamma} < 400 \text{ GeV}$ and $|y^{\gamma}| < 1$ selected from 2.5 fb⁻¹ of data
- Background is subtracted by fitting Pythia γ+jet (for signal) and dijet (for background) templates of the calorimeter isolation distribution to the measured distribution in different E_T^γ bins

19/11/2010 Costas Vellidis

- Dominant sources of systematic uncertainty in data: signal fraction estimate at low E_T^γ and energy scale (tuned with Z→e+e− "photon-like" selected events) at high E_T^γ
- Data compared with NLO calculations (Jetphox) which include fragmentations [S. Catani et al., JHEP 0205, 028 (2002)]
- Data & theory in fair agreement, within uncertainties, except at low E_T^γ (< 50 GeV, dominated by Compton scattering) where theory underestimates data

Measurement of the Isolated Photon Cross Section with Associated Jet using the D0 Detector

(Phys. Lett. B 666, 2435, 2008)

- Quark annihilation, Compton scattering and quark → photon fragmentation dominate
- Measurement of d_σ/(dE_T^γdy^γdy^{jet}) tests
 pQCD with potential to constrain proton
 PDFs
- Isolated γ 's [($E_{tot}^{R=0.4} E_{em}^{R=0.2}$)/ $E_{em}^{R=0.2}$] <0.07) with $E_T^{\gamma} > 30$ GeV and $|y^{\gamma}| < 1$ selected from 1 fb⁻¹ of data
- Background photons subtracted with a NN
- Central ($|y^{jet}|$ < 0.8) and forward (1.5 < $|y^{jet}|$ < 2.5) jets with E_{T}^{jet} > 15 GeV selected
- Cross sections measured in 4 angular regions
 Viviet >0 (< 0) for central (forward jets) to sena

arXiv.org:0804.1107)

 $y^{y}y^{jet} > 0$ (< 0) for central (forward jets) to separate low and high x parton scattering

Costas Vellidis

7

- Data compared with NLO (Jetphox) calculations
- Theory does not describe the data well enough within uncertainties

Measurement of the Photon Cross Section with Associated Heavy Flavor Jet using the D0 Detector

(Phys. Rev. Lett. 102, 192002, 2009 arXiv.org:0901.0739)

- Compton scattering dominates at E_T^{γ} < 90 (150) GeV for c (b) quarks, quark annihilation contributes too
- Measurement of d_σ/(dE_T^γdy^γdy^{jet}) tests the heavy flavor and gluon contents of the proton
- Isolated γ 's [($E_{tot}^{R=0.4} E_{em}^{R=0.2}$)/ $E_{em}^{R=0.2}$ <0.07)] with E_{T}^{γ} > 30 GeV and $|y^{\gamma}|$ < 1 selected from 1 fb⁻¹ of data
- Background photons subtracted with a NN
- Central (|y^{jet}| < 0.8) jets with E_T^{jet} > 15 GeV selected, heavy flavor tagged using a NN based on heavy flavor hadron life times

9

- Data compared with NLO QCD* calculations in 2 angular regions, y^yy^{jet} > 0 and < 0 *[arXiv:0901.3791v1 (2009) & PRD65, 094032 (2002]</p>
- Theory agrees with γ+b data but not with γ+c E_Tγ >70 GeV data; adding intrinsic charm (IC) in CTEQ6.6 * tends to correct the predictions
 19/11/2010

*[PRD**75**, 054029 (2007)]

Statistical uncertainty in data 2-9%, systematic uncertainty 15-28% with main sources the γ purity at low E_T^{γ} and the HF fraction at high E_T^{γ}

10

Costas Vellidis

Measurement of the Photon Cross Section with Associated b Flavor Jet using the CDF Detector

(Phys. Rev. D. 81, 052006, 2010 arXiv:0912.3453)

- Isolated γ 's ($\Sigma E_T^{R=0.4} E_T^{\gamma} < 2 \text{ GeV}$) with $E_T^{\gamma} > 20 \text{ GeV}$ and $|y^{\gamma}| < 1.1$ selected from 0.5 fb⁻¹ of data
- Background photons subtracted using CPR and CES data
- Central (|y^{jet}| < 1.5) jets with E_T^{jet} > 20
 GeV selected, b jets identified using secondary vertex displacement
- γ+LF jet background subtracted by fitting Pythia γ+HF jet and γ+LF jet templates to the data
- Main source of systematic uncertainty in the data (~17%) is the **b** jet purity

 19/11/2010 Cos

■ The data are well described by NLO calculations [PRD **79**, 054017 (2009)]

11/2010 Costas Vellidis 11

Direct Photon Pair Production Cross Section

- $\gamma\gamma$ is a search channel for light mass **Higgs and new phenomena** (new heavy resonances, extra spatial dimensions, ...); direct $\gamma\gamma$ production is an irreducible background to these searches, need to be understood
- Quark annihilation, gluon fusion and Compton scattering (very small) contribute; fragmentations are also important in the gluon fusion and Compton scattering channels for high gluon luminosity
- Measuring $d\sigma/dX \{X = M_{\gamma\gamma}, p_T^{\gamma\gamma}, \phi_{\gamma\gamma}, \cos\theta_* \cong tanh[(y_{\gamma1} y_{\gamma2})/2]\}$ also tests pQCD

Compton + 1 fragmentation

fusion + 2 fragmentations

Measurement of the Direct Photon Pair Production Cross Section using the D0 Detector

(Phys. Lett. B 690, 108, 2010 arXiv.org:1002.4917)

- Isolated γ 's [($E_{tot}^{R=0.4} E_{em}^{R=0.2}$)/ $E_{em}^{R=0.2}$ <0.1] with $E_T^{\gamma 1} > 21$ GeV, $E_T^{\gamma 2} > 20$ GeV and $|y^{\gamma}| < 1$ selected from 4.2 fb⁻¹ of data
- Also required $\Delta R > 0.4$ and $M_{\gamma\gamma} > p_T^{\gamma\gamma}$ which, together with the isolation cut, eliminate most of the fragmentation contributions
- Small background from Z→e+e⁻ events faking γγ subtracted using a Pythia Z→e+e⁻ sample normalized to the NNLO Z→e+e⁻ cross section
- normalized to the NNLO Z→e+e- cross section

 Diphoton background subtracted with a 4×4 matrix technique using a NN output as the discriminant between signal and background photons

■ Single- & double-differential cross sections were measured

19/11/2010 Costas Vellidis

Data are compared with calculations from

- Pythia* [LO + underlying event]
- Diphox** [NLO + fragmentations]
- Resbos*** [NLO + soft gluon resummation]

*JHEP **0605**, 026 (2006); **Eur. Phys. J. C**16**, 311 (2000); ***PRD**76**, 013009 (2007)

- NLO cross sections corrected for multiple interactions & hadronization derived from Pythia
- None of the 3 predictions describes the data well over the full kinematic ranges
- NLO performs well at high $M_{\gamma\gamma}$, low $p_T^{\gamma\gamma}$, large $\Delta \phi_{\gamma\gamma}$, the range of Higgs & new physics searches

Sherpa* calculations [Tree-level matrix element + parton showering] describe D0 results quite well (F. Siegert, http://omnibus.uni-freiburg.de/~fs1015/talks/2010-05-CMS-Hgg.pdf) 19/11/2010 *PRD81, 034026 (2010) Costas Vellidis
14

Direct Photon Pair Production Double-differential Cross Sections measured with the D0 Detector

Measurement of the Direct Photon Pair Production Cross Section using the CDF Detector

(www-cdf.fnal.gov/physics/new/qcd/diphXsec_2010/public_diphoton.html)

- Isolated photons ($\Sigma E_T^{R=0.4} E_T^{\gamma} < 2 \text{ GeV}$) with $E_T^{\gamma 1} > 17 \text{ GeV}$, $E_T^{\gamma 2} > 15 \text{ GeV}$ and $|y^{\gamma}| < 1 \text{ selected from}$ 5.4 fb⁻¹ of data
- Diphoton background subtracted with a 4×4 matrix technique using the track isolation (Σp_T^{R=0.4} – p_T^γ) as the discriminant between signal and background photons
- Data are compared with calculations from Pythia, Diphox and Resbos

■ No model describes the data well over the full kinematic ranges, in particular at low $M_{\gamma\gamma}$ (< 60 GeV/c²), moderate $p_T^{\gamma\gamma}$ (20 – 50 GeV/c) and low $\Delta\phi_{\gamma\gamma}$ (< 1.7 rad) where fragmentations are expected to contribute significantly

19/11/2010 Costas Vellidis **17**

Direct Photon Pair Production Differential Cross Sections measured with the CDF Detector: Ratios of Data/Theories

w

Conclusions

- High precision measurements of direct photon differential cross sections over wide kinematic ranges have been recently published, or will be published soon, from the Tevatron
- Single direct photon cross sections have been measured for
 - inclusive production
 - light flavor jet-associated production
 - heavy flavor jet-associated production

NLO pQCD calculations do not describe well the jet-associated production, in particular for charm flavored jets

- Direct photon pair cross sections have been measured
 - Overall agreement between data and theory, within known limitations, observed
 - * Resummation matched with NLO pQCD calculations works well at low $p_T^{\gamma\gamma}$ (\leq 20 GeV/c) and large $\Delta\phi_{\gamma\gamma}$ (\geq 2.2 rad)
 - * Fragmentations appear to be not under good control in sensitive regions $(M_{\gamma\gamma} \le 60 \text{ GeV/c}^2, 20 \text{ GeV/c} \le p_T^{\gamma\gamma} \le 50 \text{ GeV/c}, \Delta \phi_{\gamma\gamma} \le 1.7 \text{ rad})$

19/11/2010 Costas Vellidis **19**